
An Autonomous Path Planner Implemented on the  Rocky7  Prototype 
Microrover 

Sharon L. Laubach Joel  Burdick Larry Matthies 
Jet Propulsion Laboratory Dept. of Mechanical Engineering Jet Propulsion Laboratory 

California Institute of Technology California Institute of Technology California Institute of Technology 
198-219,4800 Oak Grove Drive Mail Code 104-44 107,4800 Oak Grove Drive 

Pasadena, CA 9 1 109 Pasadena, CA 9 1 125 Pasadena, CA 9 1 109 
Sharon.Laubach@jpl.nasa.gov jwb@robby.caltech.edu Lany.Matthies@jpl.nasa.gov 

Abstract: 

Much prior work in mobile robot path planning har 
been based on assumptions that are not really  applicable 
for exploration of planetary terrains. Based on the first 
author’s experience with the recent  Mars  Pathfinder 
mission, this paper reviews the issues that are critical for 
successful autonomous navigation of planetary rovers. 
No currently  proposed methodology accurately  addresses 
ali of these issues. We next report on an extension of the 
recently  proposed “Tangent Bug” algorithm. The 
implementation of this extended algorithm on the Rocky 
7 Mars Rover prototype at the Jet Propulsion Laboratory 
is described, and experimental results are presented. In 
addition,  experience with the limitations encountered by 
the Sojourner rover in actual  Marh’an  terrain suggest that 
terrain traversability must be more accurately handled in 
autonomous planning algorithms for interplanetary rovers. 

1. Introduction 

Planetary scientists have a unique problem when 
collecting data for their subject: in the absence of an 
interplanetary  manned space program, they  must  rely  upon 
remote sensing techniques. An invaluable part of their 
arsenal  is spacecraft which can study the region of interest 
in detail. Landers in particular are able to bring sensors 
and instruments into close contact with the planetary 
environment, and to take direct measurements of 
properties such as soil mechanics and elemental 
composition as well as being able to image surface 
features in greater  detail  than is possible with orbiters or 
Earth-bound instruments. Landers, however,  have  the 
shortcoming that they  are limited to a single site for 
study. An important addition, then, is a mobile robot 
which  can rove over a much  larger segment of the terrain 
and  can  carry imagers and other instruments to a variety of 
features spread over this larger  area. The recent  Mars 
Pathfinder mission demonstrated the utility of such an 
approach:  the Sojourner rover carried by the lander  to  the 

surface  of Mars ranged  over  an  area  approximately 20 
meters square. The Sojourner rover conducted soil 
experiments in several  different terrains, took detaded 
images of rocks and soils from centimenters away, and 
placed its on-board spectrometer on 16 distinct targets  (9 
rocks and 7 soil sites) [7]. Future missions plan to 
expand this successful technology by incorporating 
mobile robots (“rovers”)  which  are  capable of traversing 
even larger distances, carrying their instruments to a wider 
variety of features and even caching samples along the 
way. A key requirement for these new  planetary robots is 
greater navigational  autonomy since longer distances must 
be  covered  between opportunities to communicate with 
Earth than in prior missions. 

1.1 The “rover problem” 

The “rover  problem” is this: Given an unknown, 
rough terrain, the mobile robot ‘(or “rover”) must 
autonomously navigate from its current position to  the 
goal (e.g. a specified location). The rover uses its sensors 
to determine the nature of its local environment, and  plans 
its path accordingly. Rather than addressing  all of the 
issues which percolate out of this complex problem, this 
paper focusses on the aspects relevant to autonomous path ,, 

planning. 

1.2 Relevant work 

Much of the prior work for mobile robot path 
planning has  assumed  indoor environments and 
omnidirectional motion and sensing for the robot. The 
classical path planners described in Latombe [5]  further 
assume a completely known environment. However,  the 
classical planners have the useful properties of correctness 
and completeness. That is, the paths produced  by  these 
planners lie completely in the free space of the robot, and 
the planners will generate a path if one is possible, or  will 
halt otherwise. The class of heuristic planners, such as 
Brooks’ subsumption architecture [ l ]  or the track 

mailto:Sharon.Laubach@jpl.nasa.gov
mailto:jwb@robby.caltech.edu
mailto:Lany.Matthies@jpl.nasa.gov


arbitration schemes developed  at CMU [4, 91, as  well as 
the “Go To Waypoint” algorithm employed by the 
Sojourner rover [7], share the useful  property of being 
able to be  made  sensor-based much more easily than  the 
classical planners, and can be applied to unknown terrains. 
However, although they  are  designed  to  work  well in 
“most” environment configurations, they  lack 
completeness--there is no  guarantee that the algorithm 
will halt, or that the robot will be able to find the goal 
even if a path exists. In addition, the heuristic planners 
tend to result in lengthy paths in natural terrain  (relative 
to the optimal path), as has been seen in field trials with 
the Rocky7 rover using a similar “Go To Waypoint” 
algorithm. (Most traverses of the Sojourner rover  on 
Mars have not been long enough to demonstrate this 
effect.) It is desirable, then, to develop a path planner 
which combines the best of both worlds:  good  local 
properties  with a global convergence criterion. Such 
planners fall  under the aegis of what  can  be called 
“complete and correct”  sensor-based motion planning. 
These algorithms are incremental in nature: the robot 
senses its immediate environment, then  determines  the 
“best” local path segment based  upon these measurements. 
After moving along the local path, the robot begins the 
cycle again  with  its sensors. 

Using this model, two distinct approaches  have been 
explored, both of which adapt classical methods  to a local 
“visible area”: methods which  build  “roadmaps” within 
the free space in the visible area, such as Choset’s HGVG 
[2] and  the “TangentBug” algorithm of Kamon, et al. [3]; 
and those which utilise approximate cell decomposition, 
filling in a grid-based world  model incrementally, such as 
Stentz’ D* algorithm. [9,10] Both D* and Tangenmug 
produce “locally optimal” paths (i.e., the paths are  the 
shortest possible using solely local information). D* has 
the  advantage of being well-developed  and  of being suited 
well  to  rough terrain navigation. However, the grid-based 
world  model  requires a significant amount of memory  for 
storage. In particular, the completeness of D* depends 
entirely upon  accuracy in its world model, which is 
determined by cell granularity. In  any case, it would be 
useful  to  develop  an  alternate  planner  which produces 
locally optimal paths through rough terrain without 
requiring an extensive world model. 

The authors’  experience with path planning on  the 
Sojourner rover (and the similar planner  on  Rocky7) 
indicated that a substantially improved algorithm would 
be  necessary to fulfill the objectives of future missions. 
The approach  taken  in this paper is to extend the 
“TangentBug” algorithm developed  by Kamon, Rivlin, 
and  Rimon [3] to  be able to  account for characteristics of 
a planetary  rover operating in rough terrain. The next 
section will  provide a brief  review of the original 

TangentBug algorithm, followed by a discussion of the 
issues inherent in adapting the algorithm to a “real world” 
environment. Section 3 describes  in  detail the specific 
implementation of an  extended version of TangentBug  on 
the Rocky7 prototype microrover  developed at the Jet 
Propulsion Laboratory (JPL), and section 4 presents 
experimental results from the Rocky7 implementation. 
Section 5 discusses a proposed extension of the current 
implementation to deal with the important concept of 
traversability, which  breaks away from the current  binary 
obstacle model (i.e. a point in the enviroment is either an 
obstacle or lies in  free space). More generalised  obstacle 
descriptions are an important research issue in their own 
right, particularly as path planners are extended to  natural 
terrains. Finally, section 6 contains concluding remarks. 

2. TangentBug 

The Tangenmug algorithm [3] arose out of an 
attempt to “sensorise” the classical planner based  upon  the 
tangent graph [4].  The classical version  assumed 
complete knowledge of the environment, and  guaranteed 
that it would produce the shortest possible path, if a path 
existed. Tangenmug extends the idea  of utilising the 
tangent  graph by defining “local tangent graphs”  which  are 
entirely contained within the area visible to the robot’s 
sensors. These local graphs are  then searched for  the 
locally shortest path. In order to maintain the original 
planner’s  desirable  property of completeness, a global 
criterion is added in order to guarantee  convergence to the 
goal. This criterion, direct  distance from the goal, and 
how it is applied within the algorithm, is  discussed  in  the 
sequel. 

2.1 The  Original  TangentBug  Algorithm 

The TangentBug algorithm as originally developed by 
Kamon, Rivlin, and Rimon [3] is designed for a point 
robot, with omnidirectonal motion and sensing 
capabilities, in a two-dimensional indoor  environment 
(i.e. flat floors, with obstacles which block both motion 
and sensing). The limited sensor range of the robot is 
modelled by a “visibility polygon” (Fig. I), a star-shaped 
set which encompasses all points in free space  which  lie 
within a radius R of the robot and  which  can  be connected 
to the robot by a ray lying entirely within the  closure of 
free space. The local tangent graph (LTG) is constructed 
as follows: the nodes of the graph consist of  the  current 
robot position as well as the endpoints of the intersection 
of the boundaries of sensed obstacles with the circle of 
radius R around the robot (B(x,R)). An  additional node is 
created at the intersection of  the  ray  between  the  current 
robot position and the goal and B(x,R), as long as  the 



‘. - ”“ 

Figure 1 .  Three stages of the TangentBug algorithm. A) The robot begins at xo, computes the LTG, then moves along 
the locally optimal direction, which brings the robot to xl .  B)  The LTG at x l .  C) The robot has moved to x3 by skirting 
around the obstacle boundary , and the LTG  now contains the goal. 

intersection point lies within the closure of the visibility 
polygon. In  effect, this action “projects” the goal 
position onto the visibility polygon. The edges  of the 
LTG lie wholly within the closure of  free space, and are 
tangent  to  any obstacles encountered. 

The global criterion mentioned earler is the Euclidean 
distance  between the current robot position and the goal, 
d(x,G), measured without regard to blocking obstacles. 
The algorithm, then, consists of two behaviours--motion- 
to-goal, and boundary-following--designed such that the 
robot  is guaranteed to converge to the goal position. The 
robot begins  with motion-to-goal behaviour, in which  the 
LTG is constructed  and searched for the optimal local path 
to the goal position. Outside of the current visibility 
polygon, the environment is assumed to consist entirely 
of free space. In fact, the algorithm does not search  the 
entire LTG, but rather a subset, G1 = ( V E LTG I d(V,G) 
I min(d(x,G), dLeave) }, where V denotes a node of the 
LTG  and dLeave  is a bookmarking parameter initialised at 
d(start,G). Thus the resultant local path is guaranteed to 
bring the robot closer to the goal position. After moving 
a step along the local path, the robot re-senses its 
environment and begins the cycle again. 

The second behaviour, boundary-following, is 
invoked  whenever the robot has arrived at a local 
minimum, i.e. G1 is empty. The algorithm initialises 
dmi,(x,G), then chooses a direction to follow around  the 
obstacle boundary  and continues in this direction, using 
G1 to construct local shortcuts and recording  dmi,(x,G), 
until either the “leaving condition” is met or the robot 
detects that it has circumnavigated the obstacle. If a loop 
is detected, the algorithm halts: the goal is not  reachable, 
and in fact lies within the sensed obstacle. The “leaving 
condition” is as follows: 3 V E LTG such that d(V,G) I 
d,,,(x,G). Once this condition is met, the robot resumes 
motion-to-goal behaviour. Convergence is thus 
guaranteed:  during motion-to-goal behaviour, d(x,G) 

decreases monotonically; during boundary-following, the 
robot leaves the obstacle boundary only when  there exists 
a node in the LTG  which lies closer to the goal  than any 
point on the obstacle boundary.  In addition, the path 
length is finite, assuming finite obstacle boundaries, since 
there  are a finite number of both motion-to-goal and 
boundary-following segments, each  of  which  terminates 
after finite length. 

2.2 Issues in adapting  TangentBug to the  real 
world 

Though TangentBug incorporates both  good  local 
properties--generating locally optimal paths from  sensory 
input--and global convergence to the goal position, several 
thorny issues arise when the algorithm is applied to 
planetary rovers. To begin, rovers are not point robots 
with omnidirectional capabilities. Further, the algorithm 
assumes that the rover has ideal  dead-reckoning ability in 
order to recognise both the goal position and  to  determine 
whether the rover has circumnavigated an obstacle. Yet, 
as  has  been  demonstrated with the Sojourner rover, it is 
difficult for a rover  to maintain an  accurate  model of its 
position within a global coordinate  frame without regular 
updates from operators on Earth. [7] In 
addition,TangentBug assumes omnidirectional sensing 
capabilities, which is not always practical for planetary 
rovers. The Sojourner rover, for example, has a laser 
striping system which  detects obstacles in  only  the 
forward  direction. 

Other difficulties arise from the environment assumed 
by the TangentBug algorithm. In the typical  terrain 
encountered in the martian environment (Fig. 2), there 
exist obstacles which block motion, but not sensing (i.e. 
the rover  has the ability to  “see  over”  many  obstacles 
blocking its path)--thus, the visibility polygon is no 
longer strictly a star-shaped set. In addition, it may be 



Figure 2. Typical terrain encountered on Mars by the Sojourner rover. The rover is 68 cm long by 48 cm  wide,  and 
stands 28 cm tall. 

desirable to define the goal in terms other than strictly as a 
coordinate point. For example, alternative goal 
designations may include a given directional  heading with 
a distance andor time limit; a specified  terrain  feature; or 
even a motion termination condition derived from an 
evaluation of data sensed by the rover’s  science 
instrument payload during traverse. Further, the current 
algorithm assumes a binary obstacle model--a point in the 
environment is either an obstacle or lies in free space. It 
would be  very desirable to  be able to incorporate a notion 
of traversability, in which certain areas  could  be  designated 
as “soft” obstacles which  could  be  traversed if need be. 
Thus, the  rover  could  avoid taking an extremely long 
route--or  worse,  declaring a goal position unreachable-- 
when it could  have chosen to climb over a rough area it 
would  normally have avoided to  reach the goal. 

Lastly, some of the issues sparked by TangentBug m 
derived from other considerations. For example, while 
TangentBug  has the attractive feature of producing  locally 
optimal paths, the paths generated by the algorithm skirt 
the obstacles encountered--a safety hazard for the rover, 
particularly since its dead-reckoning ability is less than 
ideal. Also, the boundary-following behaviour is difficult 
to implement with forward-looking stereo vision sensors 
as  are  used on the microrovers developed  at JPL. Finally, 
work  must  be  done to ensure that the details of 
implementation do not invalidate the conditions of 
convergence from  the original algorithm. 

3. Details of specific  implementation  on 
Rocky7 

The TangentBug algorithm described above has  been 
implemented for the Rocky7 prototype microrover (Fig. 
3), which has been  developed at the Jet Propulsion 
Laboratory  as a research vehicle to test technologies for 
future missions [l I]. It should be  noted  that this is the 
first implementation of TangentBug, or any similar 
planner, on  an actual vehicle. The rover is 60 cm long by 
40 cm  wide,  and stands 33 cm tall, roughly the same size 
as the Sojourner rover  currently  on Mars, and  carries 
several  science instruments as  well as an arm with 
clamshell scoops for sampling operations. Its mobility 
chassis consists of a rocker-bogie system able to 
surmount obstacles 1 112 wheel  diameters  in height (1 
wheel diameter = 13 cm). For navigation, it features three 
pairs of stereo cameras--two mounted below the solar 
panel (one each front  and  rear), and one on  the  deployable 
I m mast--as well as a sun sensor for absolute heading 
measurements and sensors for measuring odometry  for 
dead reckoning. In addition, although not  currently used 
in this implementation, a localisation algorithm has 
recently  been  developed  which utilises mast imagery, 
greatly  aiding the rover’s dead-reckoning ability. 

The path-planner is implemented  on this system as 
several functions which  are  executed sequentially. The 



general  scenario is as follows: the rover is situated in 
rough terrain, with its mast deployed. The operator  views 
the set of panoramic imagery returned by the rover, and 
designates a goal position. The operator then generates a 
command  sequence  which  directs the rover to look toward 
the goal position with its mast cameras, generate a range 
image from the single-wedge stereo imagery (i.e. only  one 
image pair is utilised, rather  than panning the mast 
cameras to generate a full panorama), and begin the path 
planner. The planner first detects obstacles within the 
range image, segments out distinct obstacles, and 
computes their convex hulls. The second function then 
“grows” the convex hulls to account for the width of the 
rover, allowing the TangentBug algorithm to plan as  if 
the rover were a point robot. The third function computes 
the LTG within the visible region and invokes an A* 
search to find the shortest local path. Finally, the planner 
returns a sequence of waypoints designating the generated 
path, which is followed by the on-board path executor 
before  the operator is queried for the next step. It should 
be  noted  here that the path planner  can  be used with 
varying levels of autonomy: it could  be  used either to 
plan a “strawman” path which  could  be  modified by the 
user  before execution by the rover, or as a fully 
autonomous single-command system as just described.  It 
should also  be  noted that the boundary-following 
behaviour is not  yet implemented. Besides  technical 
considerations  which complicate implementation of this 
function--the only sensor on board which can  sense 
obstacles next  to the rover is the mast camera pair, which 

Detect Obstacles 

I 

convex hulls 

I 
modified convex hulls 

current position Lf I \ 

goal position - u TangentBug/A* 

generated path 

Figure 4. Flow chart of the implementation of 
TangentBug on Rocky7. 

Figure 3. The Rocky7 prototype microrover. 

can only be  deployed while the rover is stopped--the 
combination of the expected  terrain  and the fact that  the 
visible polygon is not strictly a star-shaped set (and thus 
the LTG is richer) suggests that the boundary following 
behaviour would  not  be invoked often. 

3.1 Obstacle  Detection 

The first step of the implementation relies upon  the 
obstacle detection algorithm presented  in [5]. This 
method utilises a simple model of an  obstacle--a 
combination of a step in height and steepness of slope--in 
order  to  determine which features in a range image depict 
obstacles. Additional functions take as input this 
collection of obstacle points, segment out cohesive 
regions, and  then compute the convex hulls of the distinct 
regions. 

3.2 Modification  of  Convex Hulls 

The convex hulls just computed  are  then  passed  to a 
second function which modifies the obstacle boundaries to 



Figure 6. The left image of the 
stereo pair used  to  generate  the 
range image at left. The yellow 
overlay  depicts those pixels which 
have been  marked  as obstacles. 

Figure 5. A typical run  of the Tangenmug implementation using stereo data 
from the JPL “MarsYard”. The plot is an  overhead  view  of the range  image 
generated  from stereo imagery; overlays depict salient features. The grey points 
are pixels which  have  been  marked  as obstacles. Each obstacle region is 
enclosed by a white convex hull; the modified convex hulls are magenta. The 
goal point has  been  selected  near the center of the panoramic  wedge;  the 
autonomously generated path to this point appears in green. 

account for the width of the rover, and to  include an 
empirical  safety buffer. This technique is derived from the 
concept of configuration space, which allows the path 
planner to assume that the rover is a point robot, thereby 
easing the computational and conceptual burden. In this 
particular implementation, each  edge  of the convex hulls 
is “pushed  outward” by the given buffer  width  in a 
direction perpendicular to the orientation of the edge. This 
action has the effect of doubling the number of vertices in 
each convex hull, but ensures that the regions on the new 
obstacle boundary  which lie closer to the original convex 
hull than the buffer  width  are  reasonably small. The 
choice of buffer  width is governed  both by the size of the 
rover, and  by considerations of a safety  zone  around  the 
obstacles skirted by the planning algorithm. 

3.3 A* Graph Search  algorithm 

The new obstacle boundaries, as well as the goal 
position, are  then  passed to the final function, which 
actually computes the locally optimal path, using a 
modified A* search [8] on the local tangent graph. A 
graph  search mechanism is required for this 
implementation due to the fact that the visibility polygon 
is not strictly star-shaped, that is, the rover is able to see 
behind  many motion-blocking obstacles. Thus, the 
resultant LTG is richer  than the version in the original 

TangentBug algorithm. The current rover position and  the 
current  Euclidean  distance from the goal is placed  on  the 
Open list to initialise the search. Then the search 
progresses as follows: the Open list is sorted by the total 
path length to the goal, and the entry on the top of the list 
(with shortest path length) is expanded,  and  placed  on  the 
bottom of the Closed list. Expansion consists of 
searching  for  all  nodes adjacent to the current node  on  the 
LTG. (Note that the LTG is computed  over  the  entire 
visible region, and since only a single panoramic wedge 
facing the goal is used, all nodes of the LTG are  closer to 
the goal than the current rover position. Thus, although 
the locally optimal path may backtrack  within the visible 
polygon--since the visible polygon is no longer strictly a 
star-shaped set--the ultimate endpoint of the local path is 
guaranteed  to  be closer to the goal than the current rover 
position.) Once these nodes  are found, their total path 
length is computed by adding the ‘‘backwad‘’  cost--the 
cumulative lengths of the edges traversed to  reach the new 
node-and the direct  distance from the new  node  to  the 
goal, d(V,G), and they  are dded to the Open list. The 
Open list is sorted, and the process begins again. The 
process halts when the goal point is added to the Open 
list.  The path is then “read out” from the  Closed list, 
skipping noncontiguous points. 



4. Experimental  Results 

The algorithm as implemented for Rocky7 and 
described above has been  tested in several configurations. 
First, it was  tested  as a single-step planner--i.e., the start 
and goal positions were  contained in a single panoramic 
wedge--using  imagery  collected in the “MarsYard”, an 
outdoor testing facility at JPL designed to mimic the rock 
distributions seen by the Viking landers on Mars. The 
functions were implemented in C and run  on a Sparc 10 
workstation. A typical path generated in this manner is 
shown  in Fig. 5. Next, the algorithm was tested with 
Rocky7: the planner  was used as a single-step, off-line 
planner  which  was  then  executed by the rover: the rover 
generated the stereo imagery and the range image, which 
were then used  by the off-line C functions to generate a 
sequence of waypoints which  were  then  used  to  command 
Rocky7. These tests revealed unfortunate interaction 
between  the  TangentBug  planner  and Rocky7’s current 
waypoint-based heuristic path executor (the “Go To 
Waypoint” algorithm described in [ 1 l]), indicating that a 
more  appropriate  path executor is required. 

In a new series of tests about to be completed, the 
TangentBug-derived  planner  has  been  ported  on-board 
Rocky7, which runs VxWorks and ControlShell on a 
68060 processor, and the path executor has been  replaced 
(until further work can  be  done  on a more suitable 
execution algorithm) by commands which  drive the rover 
directly  to the specified waypoint, without obstacle- 
avoidance. This replacement  can  be justified by the fact 
that  for  each step, the stereo data returned by the rover’s 
mast cameras is accurate to 0.8 cm within the 4 meter 
radius  used  by the planner. Thus, it is unlikely that 
within this planning radius the rover  would  drift enough, 
or that undetected obstacle boundaries  would arise, to 
make  obstacle-avoidance in the path executor  necessary. 
The tests will be  conducted with the Rocky7 microrover 
in the JPL “MarsYard”, and will test the full capability of 
the algorithm by allowing the rover to use multiple 
panoramic wedges (taken from a single position) for 
planning if necessary, thus allowing the rover to plan 
around  larger obstacles, and  to  chain  together  several steps 
and visibility polygons to reach a distant goal. 

5. Future  Work 

There is much work  which remains to be  done  which 
will improve the TangentBug algorithm for use as a 
planner for long-range (several hundred meter)  traverses 
through  planetary terrain. Among issues soon to be 
addressed  are immediate extensions to the planner as 
implemented  on Rocky7 to take advantage of the full 
capabilities of both the TangentBug algorithm and  of the 

Rocky7 mast cameras, as well as developing a concept of 
traversability to better be able to utilise the rover’s 
mobility characteristics. 

5.1 TangentBug  implementation 
extensions 

In the short-term, the current implementation of 
TangentBug on Rocky7 will be  extended to round out the 
algorithm’s capabilities. The boundary-following 
behaviour will be implemented, for example, as well as 
the ability to designate goals using means other than 
strictly coordinate points, e.g. heading and distance. After 
each step, the convergence  proof for the implemented 
algorithm will  be analysed to ensure completeness. 

5.2 Traversability 

Work has recently  been  started  on incorporating a 
concept of traversability into the implemented 
TangentBug planner. As  can  be seen in the example in 
Fig. 5, a string of rocks across the far  edge  of the wedge 
has  blocked  off  any progress in this direction. Although 
it may  be possible that a clear path can  be  found by 
looking either to the left or right, it may also be true that 
it may  be desirable, given the sensed enviroment, to have 
the rover simply drive over the rocks blocking its path, if 
possible. It should be  pointed out that it is not  always 
desirable to have the rover run roughshod  over  rocks 
blocking its path. The current model for obstacles sensed 
by the stereo vision system (as described  above) is a step 
and slope model: objects exceeding a certain  height 
threshold and a given slope threshold  are marked as 
obstacles. Thus, obstacles are  described  as those objects 
which exceed the step-climbing ability of the rover 
mobility system. Sensor noise and the simple model 
conspire to make the obstacle sensing algorithm quite 
conservative. However, given only this knowledge about 
its environment, the rover must conclude that those areas 
marked as obstacles are off-limits. Thus there is a need 
for an analysis of traversability issues and movement 
away from the simple binary notion of obstacles discussed 
earlier. Indeed, our firsthand  experience  with  driving  the 
Sojourner rover on Mars has  revealed  many  cases  when a 
binary obstacle model has resulted in halted motion, often 
leaving the rover in  an undesirable configuration. 

Two approaches are being explored  to extend 
TangentBug to allow for these more generalised obstacles. 
Both involve defining the obstacles as a set of  weighted 
regions, rather like a “potential field”  approach,  where  the 
weights reflect the “costs” associated with traversing  the 
given region. For example, define a function a(q, q) 
which assigns a cost to each configuration, based  upon  the 



properties of the terrain  and mobility characteristics of the 
robot. The first approach calls the planner  repeatedly  for 
each step, where for each iteration the cost threshold 
associated  with  what is considered “free space” is raised 
until either a path is found  or the threshold cannot be 
raised  further without increasing the risk to the rover to 
undesirable levels. The second  approach utilises the 
TangentBug planner once for each step, using as obstacles 
only those regions marked as “untraversable”, and then 
warps the generated local path according  to a(q,q), using 
calculus of variations techniques, to produce a path which 
minimises its associated cost. 

6. Conclusion 

The field of planetary exploration offers a rich 
environment for mobile robotics research, containing as it 
does  many  complicated issues which must be  tackled in 
order to  produce successful missions. In particular, this 
paper  addresses some of the issues related to autonomous 
path-planning for planetary rovers designed to traverse 
hundreds  of meters between uplink opportunities. A 
sensor-based  adaptation of a classical planner with 
desirable  properties has been implemented and tested  on 
the Rocky7 prototype microrover, and several extensions 
to  the  current implementation have  been  proposed, 
including the  vital area of incorporating traversability into 
planning decisions. With these tools, mobile robots will 
prove  to  be an even more useful and robust addition to the 
techniques  available for planetary exploration. 

7. Acknowledgements 

The work described in this publication was  carried out 
at  the Jet Propulsion Laboratory, California Institute of 
Technology, under a contract with the National 
Aeronautics  and Space Administration. 

We  would like to acknowledge the team members of 
the Long Range Science Rover task, without whom this 
work  would  have  been impossible, as well as the Mars 
Pathfinder  Microrover Flight Experiment team, for 
inspiration and for flight experience with a rover. Sharon 
would  particularly like to thank Todd Litwin, Andrew 
Mishkin, and Rich Petras for their invaluable assistance 
with this work. 

8. References 

[2] Choset, H., Sensor Based Motion Planning: The 
Hierarchical  Generalized Voronoi Graph. Ph.D. thesis, 
California Inst. of Tech., 1996. 

[3] Kamon, I., Rivlin, E. and Rimon, E., “A New  Range- 
Sensor Based  Globally Convergent Navigation Algorithm 
for Mobile Robots,” in Proc. IEEE Con$ Robotics 
Automat., 1996. 

[4] Kelly, A.J., “RANGER--An Intelligent Predictive 
Controller for Unmanned  Ground Vehicles.” The 
Robotics Institute, Carnegie Mellon, 1994. 

[5] Latombe, J.-C., Robot Motion Planning. Kluwer 
Academic Publishers, 1991. 

[6] Matthies, L. and Grandjean, P., “Stochastic 
Performance Modeling and Evaluation of Obstacle 
Detectability with Imaging Range Sensors,” IEEE Trans. 
Robotics  Automat., vol. 10, no. 6, 1994. 

[7] Mishkin, A., Morrison, J., Nguyen, T.,  Stone, H. and 
Cooper, B., “Operations and Autonomy of the Mars 
Pathfinder  Microrover,” submitted to IEEE Aerospace 
Conf., 1998. 

[SI Rankin, A.L., Path Planning and Path  Execution 
Software for an Autonomous Nonholonomic Robot 
Vehicle. Master’s thesis, University of Florida, 1993. 

[9] Stentz, A. and Hebert, M., “A Complete Navigation 
System for Goal Acquisition in Unknown Environments,” 
Autonomous  Robots, 2, 1995. 

[lo] Stentz, A., “Optimal and Efficient Path Planning for 
Partially-Known Environments,” in Proc. IEEE Conf. 
Robotics  Automat., 1994. 

[11] Volpe, R., Balaram, J., Ohm, T. and Ivlev, R., “The 
Rocky 7 Mars Rover Prototype,” in Proc. IEEE/RSJ 
Con5 Intelligent Robots and Sys., 1996. 

[ l ]  Brooks, R. and Flynn, A., “A robust layered control 
system for a mobile robot,” IEEE Trans. Robotics 
Automat., vol. 2, no. 1, 1986. 


